AD=A102 065 CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB F/6 972
THE DESIGN METHODOLOGY OF DISTRIBUTED COMPUTER SYSTEMS.(U)
DEC 80 C V RAMAMOORTHY F49620=79«C~0173
UNCLASSIFIED AFOSR-TR=-81-0558 NL

SN

M

" R
UNCTAG LI LED e e e o o i
SECURITY CLASSIFICATION OF THIS PAGE (When Duta Frtered) 36 iy o

(/ REPORT DOCUMENTAHON,}DAGE L‘ _-' +Cm ul-‘.;~‘$)I;?:l)(‘lg:gﬁ:ggt;ggh;‘scmm e

WORT NUMB 0 5 5 8 2. covr ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
NS Arosg ?T'RWM,S,;..M, i
/E‘ 1 §.° TITLE Tand Swubrrerey - ° - 5 TYPE gF R?PORT & PERIOD COVERED
! ~ -
’\ IHE DESIGH METHODOLOGY OF DISTRTBUTED ('OHF’U 'ER (—/ FINALg 30 JUN 79—3].4DEC 80., {
SYSTEMS o 4 : ' -/
Z -6~ PERPORMING O6. RERGRT NUMBER.
m 7. AUTHOR(S) B. CONTRACT OR GRANT NUMBER(S) s
ot) \
QD%/O] c.v. Ramamoorthy | 4 : ' -~ /
o“* ! /% | 149620-79-C-0173 J
9 F’ERFORMI‘NG ORGANIZATION NAME AND ADDRESS o 10. :ggiR&AxOERLKEt(SINTT‘NPURMOBJEEgST, TASK
N Electronics Research Laboratory . 9’
College of Engineering - KPEG1102F \/ /" -
3 Universicy of Caiifornia, Berkeley CA 34720 k/é’ ””(Z(ﬁ A2 ‘ -
; ﬁ 1. CONTROLLING OFF{CE NAME AND ADDRESS " 12. REPORT DATE
: Alr Force Office of Scientific Research/Nii DL 880 "
4 eT! |[Bolling AFB DC 20332 ~ [ROVBEROF PAGES
o 2
> Q 14. MONITORING AGENCY NAME & ADORESS(if dilterent from Contralling Office) 15. SECURITY CLASS. (of this report)
= : / . UNCLASSIFIED
: , Ny
1 Z - T6a. DECL ASSIFICATION DOWNGRADING
- SCHEDULE —

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

MY e . el g

-

17. DISTRIBUTION STATEMENT (of the abstract entered in Rlock 20, if different {rom Report)

[
]

18. SURPPLEMENTARY NOTES

e

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

,20 ABSTRACT (Continue on reverse side Il necessary and identify bv block number) A

' 14 ~

This is a final report for rescarch in distributed computer systems. -4
-l

Chapter 2 describes top-down development approach, The development process is
divided into four successive phases; (1) requirement. and specification phasec;
(2) design phase; (3) implementation phase; (4) evaluation and validation phase,

DIIG HLE LUPY

Guidelines and automated tools for the firs! two phases are developed. A
"o raphical method (using the max. flow min. cul algorithm and cut—treec concept)
{CONT) y;
FORM
DD | an 75 1473 EOtTiON OF 1 N'OVIG'S,VIS ossqu_er‘a UHCLASSTFIED T

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

IR B O T
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

4 \

(ITEM #20, CONT.)

to decompose and partition a computer system into loosely coupled subsysteons
is proposed., The implementation and the evaluation and validation phascs are

outlined briefly only because they are very technology and architecture ;gﬁ,
dependent. P2
‘ [——u

3 Chapter 3 examines Petri net model for asynchronous concurrent systems.,

4 Procedures based on Petri net for predicting and verifying the system
performance are prescnted, The computational complexities of these procedures
are also shown.

Chapter 4 examines the analysis techniques for deadlocks in asynchronous

concurrent systems. In particular, we study in detail deadlocks causcd by e
; conflicts in mutual exclusive access to resources with the constraint that iaﬁ&
: each resource type has only onec member, yosiiil
3 Chapter 5 first classifies and then evaluates several existing softwarc
3 reliability models according to some proposed criteria. Then it develops a
! theory of software reliability basecd on the nature of the input domain of
x the program, i.c., the size of the errors and lhe number, complexity and
‘ continuity of equivalence classes formed in the input domain.
Pexa’
p—
. Accession Tor
NTIS nPARI X'
DTN T2 7 T
i . $od .
i Ui o nineen - -
Doaneed i
; Just ificion .!E;
_—— - —
- b
A ' -
. i BT = |
1 ’ .. ;
Pz !
: 1l .;
| 3
Niut] ., vé -
| ! \
. ! ' i l.\
. I !
. I 1}
{
- -
V.
R
.
[S
. ‘. .
€ .—

UNCLASSIFIED
oy ok FR /l:szcmmTv CLASSIFICATION OF 74 1-AGE/I%hen Dara Fnie

A ’ 7 N .' ”
. 9 - ind “K W
. Ly

. ~ .
.*.“'.' e M " v - Lot n Lo ‘e RS . s » . <

AFOSR-TR- 81 -0558

FINAL XEPORT

) IHE DESICN MET:HODOIOGY

i
OF DISTRISUTED CO!PUTER SYSTEMS i

by

C. V. Ranauwoerthy

¥inz? Technis

"

1 Report
Jun 30, 1979 - Dce 31, 1980

AT05R Contreact Y59620-79--C-0172

ELECTROHIC3 RLSEARCH LABORATORY

College of ¥Engiceering
University of Califurnia, berkeley

94720

Approvodtorpubliere1easo:
distrlbutionunlimited.

81 7 24 (A7

‘P

ABSTRACT

This is a final report for research in distributed computer systems.

Chapter 2 describes top-down development approach. The development
process is divided into four successive phases: (i) requirement and specification
phase; (ii) design phase; (iii) implementation phase; (iv) evaluation and validation
phase. Guidelines and automated tools for the first two phases are developed. A
graphical method (using the max. flow min, cut algorithm and the cut-tree
concept) to decompose and partition a computer system into loosely coupled
subsystems is proposed. The implementation and the evaluation and validation
phases are outlined briefly only because they are very technology and architecture
dependent.

Chapter 3 cxamines Petri net model for asynchronous concurrent systeins.
Procedures based on Petri net for predicting and verifying the system performance
are presented. The computational complexities of these procedures are also shown.

Chapter & examines the analysis techniques for deadlocks in asynchronous
concurrent systems. In particular, we study in detail deadlocks caused by conflicts
in .autaad exclusive accesy to Lescuces with the conctralint that sech resour:e ty)
has only one member.

Chapter 5 first classifies and then evaluates several existing software
rcliability models according to some proposed criteria. Then it develops a theory .
of software reliability based on the nature of the input domain of the program, i.c.,
the size of the errors and the number, complexity and continuity of equivalence

classes formed in the input domain.

AIR FORCE OFFICE OP SCIERTIPIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC

This technical report has been rovieved and is
approved for public release 1AW AFR 190-132 {7d).
Distribution i3 unlimited.

A. D. BLOSE

Techuical Information Officer

rv.w» DR L L

CHAPTER ONE

Introduction

In the past year, we have studied the distributed computer system. The

work that we have accomplished can be summarized as follows:

() Top down design strategy.

(2) Modelling and performance analysis of asynchronous concurrent systems.
(3) Methods to detect deadlock in distributed systems.

(4) To develop an theory of software reliability based on éhe nature of the

input domain of the program.

Current approaches to the design and analysis of computer systems are
based primarily on experience and intuition. The specification, design,
irnplementation and evaluation of computer systems are very expensive, difficult
to test adequately, slow to deploy and difficult to ad.apt to changing requirements.
T1.:se difficulties have led to many schedule slippages and project failures.

This research attempts to develop a systematic approach for the design
and analysis of computer systems. However, the activities involved are so wide
and varied that only part of the full scope of the design and development process is
studied. A top-down deveiopment approach 1cr computer sysiemns is developod.

The techniques for prediction and verification of the performance of
asynchronous concurrent systems can be classificd into two categories: (n
X deterministic rnodels, and (2) probalistic models. In deterministic models, it is

usually assumed that the task arrival times, the task exccution times, and the
synchronization involved are known in advance to the analysis. With this
information, a very precise prediction of the system performance can be obtained.

This approach is very uscful for performance evaluation of real time control

systems with hard deadline requirements.

TR P

In probabilistic models, the task arrival rates and the task scrvice times
arc usually specified by probabilistic distribution functions. The synchronization
among tasks is usually not modelled, because otherwise the.number of system
states becomes so large that it would be impossible to perform any analyses.
Probabilistic models usually give a gross prediction on the performance of the
system and are good for early stages of system design when the system
characteristics are not well understood. In this paper, we focus on performance
analysis of real time systems and therefore we have chosen the deterministic
approach. In particular, in order to model clearly the synchronization involved in
concurrent systems, the Petri net model is chosen.

In our approach, the system to be studied is first modelled by a Petri net.
Fased on the Petri net model, a given system is classified as either: (1) a
consistent system; or (2) an inconsistent system (the ;1cfinitions are given in later
sections of the paper). Most real-world systems fall into the first class and so we
focus our discussion on consistent systems. Duc to the difference in complexity

involved in the pzrformance analyses of different types of consistent systcins, they

are further subclassified into: (i) decision-free systeimns; (ii) safe persistent
systems; oo d (0.) genere! systenm s, Proc:dures Jor predicting arad verilying the
system performance of zll three types are presented. It is found that the
coinputational complexity involved increases in the samne order as they are listed
atove.

Our work in system deadlocks concentrates on analysis techniques for
deadlocks in asynchronous concurrent systems. This includes multi-programmed
systems, multiple processor systems and computer networks. In particular, we
studyin detail deadlocks caused by conflicts in mutual exclusive accesses to
resources with the constraint that each resource type has only one member.

Deadlocks duc to the erroncous nesting of binary semaphores (Dij 71), nesting of

-3-

critical regions (Bri 72,Bri 73a) and nesting of monitors (Bri 73b, Hoa 74) are
important members in the above category. In addition to these, deadlocks due to
conflicts in data file Jockings in distributed database systems also fall into the
above category.

In order to facilitate the use of digital computers in critical, real-time
control systems (e.g., nuclear power plant safety control systems), the software
must be thoroughly validated. Software reliability is a measure of the confidence
in the operational correctness of the software. Since the early 70's several
software reliability models have been proposed. However, most of these models
are ad hoc extensions of hardware reliability models and their assumptions have not
been validated.

This thesis first classifies and then evaluates several cxisting software
reliability models according to some proposed criteria. Then it develops a theory
of software reliability based on the nature of the input domain of the program, i.c.,
the size of the errors and the number, complexity and continuity of cquivalence
classes formed in the input domain,

A gencral framework is developed for software reliability growth models
used during the debugging phase of software development. It incorporates the
concepts of residual error size and the testing process used. Two specific models
are then developed. The first approach models the effect of debugging actions on
the residual error size as a random walk process with a continuous state-space.
The time beween the detection (and correction) of successive errors is then
modelled as a doubly stochastic Poisson process. The application of this model and
its statistical evaluation are also discussed. The second approach is a bayesian one
dealing with the prior and posterior distributions of the residual error size.

During the validation phase, the program is tested extensively in order to

determine its reliability. Even if new errors are detected, they are not corrected.

4.

< - - .. . —— - o - e g g -

: A model is developed for directly estimating the correctness probability of the
softwarc based on the set of test cases used and on the number of equivalence
rlasses, their complexity and continuity properties. The model is applied to a pilot
orograin developed for nuclear power plant safety control systems.
A predictive model, applicable during the operational phase, is developed
based on the continuity of the input domain. Anuncertainty measure using fuzzy

set theory is proposed for the operational software. The perturbation of the

R oatm i

residuza! error size due to different maintenance activitics is also discussed.

s The theory is then applied to the evaluation of software validation
techniques and programming languages. Some language constructs and
documentation techniques which can improve the reliability of the software are
gropasced. The application of the theory to different aspects of project
management is also discussed.

This report is divided into 6 chapters. The top down design strategy is H
presented in chapter 2. Chapter 3 presents the techniques for performance
evaluation in concurrent systems. Chapter 4 develops the procedure of deadlock

deteciion in distributed systemis. Chapter 5 presents the developrnent of a theory

Program. Lastly, section 6 gives a conclusion of this rcport.

CHAPTER 2

A Top-Down Approach for the Development
of Distributed Computer Systems

2.1 Introduction

In this chapter, a systematic approach for the development of distributed
computer systems is discussed. The objective is to develop guidelines and
automated tools for the design of distributed systems. The philosophy behind the

approach is based on top-down hierarchical modelling of DCS. -

2.2 The Top~Down Development Approach

The top-down approach proposed here can be broken down into four

successive phases (Figure 2.1):

(1) Requirement and specification phase.
(2) Design phase.

(3) Implemcntation phase.

(4) Evaluation and validation phase.

The requirement and specification phase starts with some (possibly

incomplete, vague, and informal) system requirements that approximate the

- gesired syscein, and finishes when the modiiieo aad elaborated r;-qu.'rum:;av:s havz
been formally encoded and tested to the satisfaction of the system engincers and
the "customers".

The design phase starts with the requirement specifications and finishes
when the system specifications are produced. The objective is to optimize and
organize the system in a well formed structure. It involves an hierarchy of
decornposition and partitioning of the system into subsystems.

The implementation phase takes the system specification and develops the

system architecture. It then maps the system functions into either hardware or f

3SVHE NOILVAITVA
CAV NOILVUO3ANI

ISVH
NOILVINWZTaGnl

3SViHe N9ISID

ISYHd NGILVSIJI0ZcS
Q\V INZAZVIN0Y

(S

L3o07opoyiow

10

10

SUDLdOTVATP UMOP do3 v T*Z waidid .
sosALouy /
pue /
Gui3sol
JUSWEO L OASE /
SATNGSOS PUD TURMDUTH \ .
).
*230)
SuLuoL3Laved
pud
UOLTLSOGRD

- P e tme en Sws WA e

software functions. It is only at this step that physical constraints and technology
comes into consideration.

The final step is the evaluation and validation of the system. This phase
uscs the bottcm up validation approach. It takes the final design and ensures that
the system meets the original requirements. This step uses both analytical

modelling and simulation.

2.2.1 Requirement and Specification Phase

This phase consists of four major steps (Figure 2.2): (i) requirement
elaboration, (ii) requirement specification and attribute formulation, (iii) process

definition, and (iv) verification of requirements.

2.2.1.1 Requirement Elaboration

The requiremment claboration step can be considered as a problem
understanding stage. The objective is to let the requirement engincers to have a

bird's-eye vicw on the operations of the system.

2.2.1.2 Requirement Specification and Attribute Forinulation

(a) Reguirerncnt Specifization

In real-world situations, the problems are so complex that pure
mathematical formulation is usually irnpossible. The approach of using a
specification language is chosen.

A specification language is a syntactically and semantically well defined
fanguage possibly intermixed with mathematic equations. Its whole purpose is to
provide a cfficient and effective medium for defining the system requirements.
The language should be amenable to both static (hicrarchical relationship, data

detinition, etc.) and dynamic (control flow and data flow) analyses (Bel 76,Ham 76,

Pet 77).

Users' PRegquirements

\I
Requiremant
> s
Elaboration
v R
Requirement Attribute
Specifications Formutation
Frocess i
2| Definition |* -

Yes
\I
DESIGH
PHASE

Figure 2.3 The flow chart for the requireuant
and specification phase

 ean t ki £ g al o g hido o 2

ik dan <N LAY s)

(B) Attribute Formulation

For a distributed system, the attributes are cost, reliability, availability,
flexibility, expandability, reconfigurability, etc. Some of them are very difficult
to be quantified. Usually, the situation is further complicated by the fact that the
system attributes are interdependent on each other and they may compcte and
interact with each other. The designers are forced to consider design tradeoffs

early in the development process.

2.2.1.3 Process Definition

The process definition step accepts inputs from the requirement
specification and attribute formulation step and identifies major functions to be

performed. First the input stimulus and the required responses are characterized.

2.2.1.4 Verifiction of Requirements

In this step, the processes of the virtual system is verified to meet the
original users' requirements. As the system is developed hierarchically, the
specifications of one level are the requirements of the next level. To verify the
correctness of the virtual system, we only have to verify the consistency between

the specifications and requirements between consccutive levels.

2.2.2 Decsign Phase

The design phase starts with the defined processes which are the output of
the requircment and specification phase. The major steps involved in the design
phase are decomposition and partitioning, functional specification and finally

veritication (Figure 23).

2.2.2.1 Decomposition and Partitioning

In order for the design process to be manageable, it must be decomposed

and partitioned in such a way that most decisions can be made locally, based on

- 8-

Svysten
Spvecification
&
; — o
| \ {
| System and i
! Attribute i
| Decomposition R l
l 1
| {
i
TELONPOSITION ! i
i..“D l '
PARTITIONING 1
' |
' > . \’ - }
| Interaction | J Partitioning {
, Evaluation ‘ bzsed on]
S - . o, it Sttt S itr B 4 .~ 4 5
E InLELLCL]On l
{ I '
! _ I
i |

IPLERSNTATION
PHASE

Figure 2.3 1he flov chart for the design phase

data available within a Jocal area of the developing system specifications. To
achieve this, the system is decomposed into progressively more detailed
cornponents which are then grouped into partitions (subsystems) to minimize the
amount of interactions betwecn partitions. A graph theoretical approach for the

systematic decomposition and partitioning of a system is developed.

2.2.2.2 Functional Specification

The next major step in the design phase is functional specification of the
partitioned processes. This functional specification is different from the process
specification described in the reuirement specificaton phase. The objective of the
process specification is to define the interactions of the processes for the
decomposition step. The objective of the functional specification here is to define
the characteristics of the functions so to enable optimization in the functions to

processors mapping.

2.2.2.3 Verification of Design

No single model is powerful enough to have all the above features. The
control flow of a distributed system can be modelled quite effectively by Petri net,
UCLA grdaph model, E-nety eic. (Fet 77, Ges o 1, Nee 73). Thzzz mmodels iepruuent
clearly the flow of information and control in a distributed system, especially those
which exhibit asynchronous and concurrent properties.

In order to predict and analyze the performance of the designed system,

queuing modcls and simulation are often used (Fer 78).

2.2.3 Implemcntation, Evaluation and Validation

The implementation phase takes the virtual system and develops the
system architecture. It then maps the system functions into cither hardware or

software functions.

g, o . - -

REREA RS _ - e RS W - o S e e e

The final phase is the evaluation and validation of the system. This phase
vses the bottom up validation approach. Both analytical modelling and simulation
ill be used. Because of the hierarchical decompositon, each subsystem to be

inalyzed should be small and therefore complexity should be low.

2.3 Summary

The development process is divided into four successive phases: (i)
vequirement and specification phase; (ii) design phase; (iii) irnplementation phase;
and (iv) evaluation and validation phase. The first two phases are explored in
detail. The last two phases of the development process are only outlined briefly

necause they are very technology and architecture dependent.

- 10-

G Y~

CHAPTER 3

Performance Evaluation of Asynchronous Concurrent System

3.1 Revicw of Petri Nets

3.1.1 Basic Properties of Petri Nets

Petri nets (PET 77, AGE 75) are a formal graph model for modelling the
flow of information and control in systems, especially those which exhibit

asynchronous and concurrent properties.

3.1.2 Application of Petri Nets in Control Flow Analysis

Petri ncts have been used extensively to study the control flow of
computer systems. By analyzing the livencss, boundedncess and proper termination
properties of the Petri nct model of a computer systern, many desirable properties
of the system can be unveiled.

A Petrinct is live (HAC 75, HOL 71) if therc always cxists a firing
sequence to fire each transition in the nct. By proving that the Petri net is live,
the system is guaranteed to be deadlock free.

A Petrinet is bounded (KAR 66, LIE 76) if for each place in the net, there
exists an upper bound to the number of tokens that can be there simultancously. If
tokens are used to represent intermediate results generated in a system, by proving
that the Peiri net model of the system is bounded, the amount of buffer space
required between asynchronous processes can be determined and therefore
information loss due to buffer overflow can be avoided. 1f the upper bound on the
number of tokens at cach place is one, then the Petri net is safe. Programming
constructs like critical regions (RRI 72) and monitors (BR1 73, HOA 74) can be
modelled by sale Petri nets.

A Petrinet is proparly terminating (GOS 71, POS 74) if the Petri net

always terminate in a well-defined manner such that no tokens are left in the net.

- 11 -

ha

By verifying that the Petri net is properly terminated, the systein is guaranteed to

function in a well behaved manner without any side-effects on the next initiation.

3.1.3 Extended Timed Petri Nets

In order to study the performance of a system, the Petri net model is
extended to include the notion of time (RAM 74). In such extended nets, an
execution time, r, is associated with each transition. When a transition initiates its
execution it takes r units of time to complete its execution. With the extended

Cetri net model the performance of a computer system can be studied.

3.2 Performance Evaluation

The work that we have accomplished in performance evaluation is to use
Petri nets to find the maximuin perforrnznce of the system, i.e., to find the
minimum cycle timne (for processing a task) of the system. As pointed out before,
diffcrent computational complexities are involved in the analyses of systems of
different types. The appreoaches for analyzing each type of system are studied
scparately in detail in the following section. Before we come to the analyses, some

definitions are in order.

Defintticn. In a Petri net, a sequence of places and transitions, Pji1i®to...Ppyisa
directed path from P to Py, if transition tj is both an output transition of place Pj

and an input transition of place P,y for 1 i n-l.

Definiticn. In a Petri net, a sequence of places and transitions, Pyt Poty..P),, is a

directed circuit if PjtjPt2...Py, is a directed path from P} and Py and P} equals

Pq.

Definition. A Petrinet is strongly connected if every pair of places is contained

in a directed circuit.

-12-

In this paper, we presented the performance analysis techniques for
strongly connected non-terminating Petri nets. Extensions to analyze weakly
connccied Petri nets are quite straightforward so it will not be discussed in this

report.

3.2.1 Consistent and Inconsistent Systems

The first step involved in our approach to analyze the performance of a
system is to model it by a Petri net. A system is a consistent (inconsistent) system
if its Petri net model is consistent (inconsistent). A Petri net is consistent
(condition A) if and only if there exists a non-zero integer assignment to its
transition such that at every place, the suin of integers assigned to its input
transitions cquals the sum of integers assigned to its output transitions; otherwise,
the system is inconsistent. If a system is live and consistent, the system goes back
to its initial configuration (state) after cach cycle and then repeats itself. If a
system is inconsistent, either it produces an infinite number of tokens (i.e., it needs

infinite resources) or consumes tokens and eventually comes to a stop.

3.2.2 Decision-free Systems

A systomn is a decision- froe system if it, Petri ret model is 2
decision-free Petri net. A Petri net is decision-free if and only if for each place in
the nct, there is one input arc and one gutput arc. This means that tokens at a
given place are generated by a predefined transition (its only input transition) and
consurned by a predefined transition (its only output transition)

For a decision-free system, the maximum performance can be computed

quitc ecasily.

Theorem 3.1, For a decision-free Petri net, the number of tokens in a circuit

remains the same after any firing sequence.

13-

ot e 4

Definition. Let Si(n;) be the time at which transition tj initiates its nj-th

execution. The cycle time, Cj, of transition tj is defined as

lim Si(ni)/ni .
n, >
&
Theorem 3.2. All transitions in a decision-free Petri net have the same cycle

time.

Theorem 3.3. For a decision-free Petri net, the rinimum cycle tiine (maximum

performance) C is given by

1 .
C = MX{"":k"lZ,.,.’q}
S, = -
such that l(“i) a, F Cni
Tv_ = }: l’i = sun of the exccution timas of the
tieLk transitions in circuit k

total nucber of tokens in the pluces
P, &L, in circuit k

q = number of circuits in the net
ai = constant associated with transition t;
Lk = loop (circuit) k
M; = number of toxens in place P
We develop a very fast procedure to verify the perforimance of a system.

A procedure for verifying system performance

(1) Express the token loading in an nxn matrix, P, where n is the nuinber of

places in the Petri nct model of the system. Fntry (A,B) in the matrix

T

(2)

equals x if there are tokens in place A, and place A is connected dircctly

to place B by a transition. Matrix P of the example system in Fig 3.1 is

shown below:

A B C D E F G
A0 70 T1 11 ta to tol
Blo 1c t1 11 {0 to }o
clo 1o 1o to {1 1o }c
plo 'o {0 to 10 jo0 to!
E{0 {0 10 19 (0 10 {0,
Flo ‘o ‘o 'oc to fo ot
¢!o ‘o ‘o to 'o jo ‘ol
Matrix P

Express transition tirne in an nxn matrix, Q. Entry (A,B) in the matrix

equals to rj (execution time of transition i) if A is an input place of

transition i and B is onc of its output places. Entry (A,B) contains the

symbol "w” if A and B are not connected directly as described above.

Matrix Q for the example system is:

A B C D E F G
(T T T 1
RERERE '}3 'l»r'}_'v}v_:

— R ear G i
Bty TR I R A
IR —}—':—*’1'0 e}
Civ { w v 4w 120 ¢ v g % 1
[Gosmel el MR SR S 7 1 o 1
Dyw v v s ¥ i g
SERERERE ‘{'__w ._'J'.-'_.}_.:

LSS U O N O A 20 '
Fiu o re pw fwawidg
Gr2|\r{!i§-'._|w RN
Matrix Q
-15-
ey - -

- Lo 4 - s R

~r

[N

Figure 3.1 A computer configuration with the execution times of its
processes

- 16 -

e] 2y e e B PR

tasgiangen o ciaemaly o d Sk oo s auics

(3) Compute matrix CP-Q (with n-2 = 0o for n N), thenuse Floyd's algorithin
(Flo 62) to compute the shortest distance between every pair of nodes
using matrix CP-Q as the distance matrix. The result is stored in matrix
S. There are three cases:

(a) All diagonal entrics of matrix S are positive (i.e., CN -Tik O for all
circuits) -~ the system performance is higher than the given
requirement.

(b) Some diagonal entries of matrix S are zero's and the rest are positive
(i.e., CNk -Tk =0 for some circuits and CNi -Tx O for the other
circuits) -~ the system performance just meets the given
requirernent.

(c) Some diagonal entries of matrix S are negative (i.e., CNi -Tx O for
some circuits) -- the system performance is lower than the given
requirement.

In the example, for C = 15, CP-Q is

A . C -D“_ b E _;.—C——
A oo [0o [101710 Tco § oo i oo |

] B Py e o410 oo fea Voo
¢ {en i eniTea oo i3 foo Loo i |
b [eo |t ot o i co oo i b feod
F poo | -31 col oot oo ioen i =3
F § oo i -3 1 ,,(,,';"_’__'r__c_-'_g.._o.Jif’ﬂ_‘ "-3-{
¢ M2 V6o | cof oo j_co i 00 3 90 4

After applying Floyd's algorithm to find the shortest distance between every pair

of places we have: A E c E ¥ G
Alo 2ty TS e T
S R CI (O N A
C {-10 | -8 } o} 0 V-S|t -8}
RO I e S I S T A I e A
E -5 =31 5, 51 01 1 lP =34
Py st 50 57 64 1 {=3!
C L 27 05 85 €3 31 &0}
Matrix S
17 -

Since the diagonal entries are non-negative, the performance
requircmment of C = 15 is satisfied. Moreover, since entiies (A,A) (C,C), (E,E) and
{G,G) are zero's, C = 15 is optimal (i.e., it is the minimum cycle time). In addition,
when a decision-free system runs at its highest speed, CNk equals to Tk for the
Lottleneck circuit. This implies that the places that are in the bottleneck circuit
~ill have zero diagonal entries in matrix S. In the example, the bottlencck circuit
15 AtjCt2Et4Gts. With this information, the system performance can be improved
by either reducing the exccution times of some transitions in circuit (by using
taster facilities) or by introducing more concurrency in the circuit (by introducing
more tokens in the circuit). Which approach should be taken is application
dependent and beyond the scope of this thesis.

The above procedure can be executed quite fast. The formulation of
matrices P and Q takes 0(n?) steps. The Floyd algorithm takes 0(n3) stcps. As a
whole, the procedure can be executed in 0(n3) steps. Therefore, the perfermance

requirement of a decision-free systeim can be verificed quite efficiently.

3.2.3 Safe Pesistent Systems

A system is a safe persistent system if its Petri net model is a safe
persistent Petri net. A Petri net is a safe persistent Petri net if and only if it is a
safe petri nct and for all reachable markings, a transition is disabled only by firing
the transition. To compute the performance of the system, we first transform it
into a decision-frec system and then use the algorithm discussed in the previous
subscction to compute the system performance.

A persistent Petri net can be transformed into a decision-free Petri net

by tracing the execution of the systern for one cycle.

3.2.4 General Systems

A system is a general system if its Petri nct model is a gencral Petri net.

- 18-

»

A Petrinet is a gencral Petri net if it is a consistent Petri net and there exists a

reachable marking such that the firing of a transition disables some other
transitions.

L4
General systems are very difficult to analyze. In the next thcorem, we

show that it is unlikely that a fast algorithm exists to verify ghe perfosmance of a
general system. A method of coinputing the upper and lower bounds of the
performance of a conservative gencral system (Lie 76) is proposed. For a
ron-conservative general system, no good heuristics are known to the authors and

further resecarch is necded.

Theorem 3.4. Verifying the performance of a general Petri net is an NP-cormplcte

problem (Kar 72).

CHAPTER &

System Decadlock

4.1 An Approach to Decadlock Prevention

The scope of our study on system deadlock is restricted to systems using:
(i) binary semaphores; (ii) critical regions; and (iii) monitors as their interprocess
synchronization mechanisrns. This enforces structural design and greatly reduces
the computational complexitics involved in the analyses. Based on the above
wvachronization constructs, a formal graph model (the request-possession graph) is
devloped to model deadlocks in these systeins. The necessary and sufficient
conditions for the occurrence of a deadlock are derived. Based on these conditions,

techniques for uncovering potential deadlocks in @ systemn are developed, and a
b Pcd,

cystematic approach for the construction of deadlock-free systems using critical

regions and/or monitors is proposed.

4.1.1 The Request-Possession Granh Model

An request-possession graph (an RP-graph) is a forinal graph model
developed to study deadlocks in systems which use binary semaphores, critical
2gins ard’sr orz2nitots es their sy («chrenizaticr riechznls as. It is a dirxctod
bipartite graph with two types of nodes and two types of arcs (Fig. 4.1b): (1)
tesource reference nodes (which are called reference nodes in short in the rest of

the chapter), and (2) resource nodes. The reference nodes are used to represent

azcesses of resources in & system and the resource nodes are used to represent

recources. A dotted arc directed from a reference node to a resource node

represents the request of the resource from the reference node. A solid arc
directed from a resource to a reference node represents the assignment of the

resource to the reference node.

- 20 -

The RFP-graph of a program can be generated by scanning through the :
program once. The procedure for constructing the RP-graph of a concurrent
system can be best illustrated by an example. Figure 4.1 shows a concurrent (
{ystem together with its RP-graph. For each binary seamphore (P or V operation)
in the system, there is a corresponding resource node (reference node) in the ;
RP-graph. For each P operation in the system, a dotted arc is drawn from the
«corresponding re.ferencc node to the corresponding resource no\dc. Solid arcs are

then drawn from the resource nodes to a reference node for the resources that

have been possessed by the process when it begins to execute the reference node.
ror example, solid arcs are drawn from resource nodes a and b to refercnce node
v(b) ur process X because both resources a and b are possessed by the process when
it begins to execute instruction V(b). Following the above procedure, the RP-graph
cf 2 systemn can be constructed in linear time to the number of instructions in a
prazrain. As the releases of resources will never bring a system into a deadlock,

the reierence nodes corresponding to V operations are omittd in RP-graphs.

4.1.2 The Necessary and Sufficient Conditions for Deadlocks

The necessary conditior for deadiocks developed in this sectinn is
appliceble to systems using binary semaphores, critical regions and/or monitors as
their synchronization mechanisms. The sufficient condition for deadlocks
developed is only applicable to systems using critical regions and/or monitors as
their synchronization mechanisms. This is due to the unstructurencss of

scinaphores and are explained later in this section.

Dciinition. A system is safe if and only if it is decadlock-free. A system is unsafc

if and only if it potentially can get into a deadlock state.

Theorem 4.1, Only gives the necessary condition for an unsafe systemn. The

cxistence of a directed cycle in the RP-graph of a system docs not imply that the

-2} -

: Process X Process Y
- L) ’
. .
. .
P(a) P(b) | B
5 use printer use tape drive
3 . P(b) - P(a)
use tape drive use priater

. V(b) ' V(a)
V(a) V(b)

Figure,S.1a An erx20ple of system deadlochk

VN P NG P 0B S PN R PO I 4 SRR P Oy

[4
i
\
; \
P(a) - e \‘ P(b)
l 1 3
i
/
N ~
p (o) ¥ —Z B(a)
‘ Figured,1b Tie request—possession graph H
¥
cf figure 4.42 {
]
§+
:
i

system is unsafe.

The RP-graph can be generated automatically in linear time to the
number of instructions in a system. The Floyd algorithm can be uscd to detect the
existence of directed cycle in the RP-graph, which has execution time 0(n3) steps
where n is the number of nodes in the gencrated RP-graph. As a rsult, the
proposed algorithm can be exccuted in poly-nominal time to the number of
instructions in a systm. .
Before we discuss the sufficient condition for a safe system, some

extensions have to be made on the RP-graph. The resultant model is called the

augmented request-possession-graph (the ARP-graph). It is very similar to the

RP-graph except that each reference node, r, is given a sct of names, s;, such that

s~ S if and only if:

(1 s is the name of the process when it begins to execute note r, or,

(2) s is the name of a resource that has been possessed by the process when it
begins to execute node r (i.e., there exists a solid directed arc from

resource so to noce r in the RP-graph).

Tagowein 4.2, A system i- s2le if awd only 'f "te ARP-graph ciczs ro* contein 2

directed cycle with distinct names on its reference nodes (i.e., Sy"\Sy = § for all

pairs of nodes, u and v, in the cycle).

Theorem 4.2, 1Is true for a system which uses critical regions and monitors as its
synchronization mechanisms, however, it does not hold for a system that uses
semaphores as its synchronizaton mechanism. From this point onwards, when we
talk about systems, we mean systems which susc critical regions and/or monitors as
their synchronization mechanjsms.

One application of theoroem 4.2 is to prove the salety of a systom.

Before we use the Theorem, we have to develop an effective procedure to

-22 -

P e et

|
:
g
:

determine whether there exists a directed cycle with distinct labels on its nodes in
a labelled directed graph. However, it is shown in the following theorem that the
above problem is NP-complete (i.e., it is unlikely to have a fast algorithin to solve

the problem).

Theorem #.3. It is NP-complete to find a directed cycle with distinct labels on its

hodes in a labelled directed graph.

1.1.3 An Approach to the Desian of Deadlock-Free System

“heorem 4.4

If all critical regions and/or monitiors are lincarly ordered, and all
orocesses enter a critical region or a monitor at a higher level before those at a
lower level, deadlock cannot occur.

The above strategy iinposes severe constraints on the nesting of critical
regions and/or monitors. Two of its drawbacks are: (1) reducing the concurrency
in a system; and (2) reducing the transparency of a system. Onc approach to
rainedy some of the drawbacks is to group critical regions and/or monitors into scts
allowing unordered neting within each set. A lincar ordering is then imposed
anong sets. A process inust not enter a criticxl tegion or a monitor ina set at a
higher level after it has entered one in a set at a lower level. The lincar ordering
arnong scts guarantees that deadlock cannot occur due to improper nesting of
critical regions or monitors in different sets. The deadlock-free condition within
each set is verificd by the deadlock detection procedure discussed in section 4.1.1.
Tnis approach provides: (1) good programming stylc; (2) higher degree of

concurrency; (3) no run time overhead; and (4) automatic deadlock detection during

cumpilation. !

.2 Deadlock Detection in Distributed Data Bases

In a distributed data basz, deadlocks can be detected quite casily by using

- 23-

a centralized control strategy. Whenever a process locks or releases a data file, it
gets the permission from a central control node. This control node maintains a
demand graph for the whole system and checks for dcadlocif\s by searching for a
directed cycle in the graph. However, the approach is inefficient. All data
accesses have to get the permissions from the central control node although they
may not cause any dcadlocks. This slows down the system, wastes the system
communication bandwidth and unnecessarily congests the communication
subsystem. Above all, if the control node goes down, it is very difficult to recover
the system from the failure.

Another approach for deadlock detection is to store the resource status
locally at each site. Periodically, a node is chosen to be the contro} node.
Resource status are then sent from each site to the control node for analyses. This
remedices most of the drawbacks of the centralized approach. However, due to the
inherent cornmunication delay, the chosen controf node may get an inconsistent
view of the system, and it may make a wrong conclusion.

Vie have developed threc approaches to construct consistent demand
graph. In the approaches, it is assuined that each transaction is given a unique

namme.

§4.2.1 A Two Phase Deadlock Detection Protocol

In this protocol, each sitc rnaintains a status table for all resources that
arc owned by the site. For each resource, the table keeps track of the transaciton
that has locked the resource (if one exists) and the transactions which are waiting
for the resource (if they exist). Periodically, a node is chosen as the control. The
chosen control node performs the following operations:

§)) Broadcasts a nessage to all noces in the system requesting them to send
their status tables and waits until all tables have been received.

(2) Constructs a demand graph for the systein:

-2

(a) If there is no directed cycle, the system is not in a deadfock and the
node releases its control.
(b) If there is a directed cycle, the node continues its execution.

(* Broadcasts a second message to all nodes in the system requesting them

to send their status tables and waits until all tables have been received.

) Constructs a demand graph for the system using only transactions that are

reported in both the first and second reports:

(a) If there is no direct cycle, the system is not in a'deadlock and the
node releases its control.

(b) If there is a directed cycle, the systm is in a dcadlock. The node
reports the deadlock situation to a deadlock resolver.

i The above procedure suses a two phase commit protocol. By only using
transactions that are reported in both the first and the second status reports
inconstructing the demand graph, a2 consistent system stat is obtained. The main
advantage of this protocol is its simplicity. The drawback is the requirerment of
two status reports from each site before a deadlock can be determined. In general,

he protocol is good for systems in which deadlocks occur only infrequently.

4.2.2 A One Phase Deadlock Detection Protocol

In this protocol, a deadlock is detected in one communication phase. Each
site maintains a resource status table jor all local resources and a process status
table for all local precesses. The resource status table keeps track of the
transactions that have locked a local resource and the trnsactions which are
vaiting for a local resource. The process status table keeps track of the
iransactions that are being owned by processes local to the site. The system

operates according to the following rules:

(n) A process at site S requests a resource -- a transaction (S,t) is created,
% . where S is the site name and t is the time at which the transaction is
-25-

(B)

(<)

(D)

(E)

(F)

initiated. An entry (S,t,w) is put into the process status table of the site

indicating the transaction (S,t) is waiting for a resource. A message is

sent to acquire the resource.

Site T receives a message that transaction (S,t) requests a resource local

to T:

(i) 1f the resource is free, the resource is assigned to the transactin and
a lock is set on the resource. An entry (S,t,a) is created in the
resource status table of the site and a message is sent to notify the
requesting process of the assignment.

(ii) If the resource is being locked, an entry (S,t,w) is created in the
resource status table of the site and a message is sent to
acknowledge the receiver of the request.

Site S receives a resource assignment message for transaction (S,t) -- the

entry (5,t,w) in the process status table is changed to (S,t,a).

Site S receives a request acknowledgement message for transaction (S,t)

-- do nothing.

A process at site S relcases a resource corresponding to transaction (S,t)

- th2 entry (S:1,3) 's s2meved ‘rom the process stotus takle and a

message is sent to notify the releac.

Site T receives a resource message corresponding to transaction (S,t) --

the resource is unlocked and the entry (5,t,a) is removed from the

resource status table.

Periodically, a node is chosen as the control. The chosen control node

performs the following operations:

(1)

Broadcasts a message to all nodes in the system requesting them to send

their status tables and waits until all tables have been received.

- 26 -

(2) Constructs a demand graph for the systemni using only transactions for
which the resource status table agrees with the process status table (i.e.,
identical entries exist in both the resource status table and the process
status table).

(a) If there is no directed cycle, system is not in a deadlock and the node
releases its control.
(b) If there is a directed cycle, system is in a dcadlock. The node reports
the deadlock situation to the deadlock resolver.
In order to show that the above protocol is correct, we have to prove that
the existence of a directed cycle in the constructed demand graph implies the

ocewrrence of a deadlock state.

‘Theorem 4.5
A system is in a dcadiock if and only if there is a directed cycle in the

demand graph constructed by the above procedure.

t.2.3 A Hicrarchical Decadlock Detection Protocol

In very large distributed data bases, it may be very costly to transfer all
staius tabies to one site. In particular, if the access pattern is very localized, it
will be of great advantage if deadlecks are detected locally. In thesc systerns, one
approach is to group sites which are close to each other into a cluster,
Periodically, a node in a cluster is chosen to be the control. This control node
zxecutes the one phase deadlock detection protocol and constructs a demand graph

or the cluster. The result obtained by the control node together with the
satercluster accesses (which should be relatively few) arc then sent to a central
~aoatrel node (which is also chosen dynamically). Based on this information, the

«entral control node constructs the demand graph of the whole system. In this

- 27 -

L

way, deadlocks within a cluster are detected by the control node of the cluster and

deadlocks among clusters are detected by the centr] contro} node.

Definition

A transaction is a Jocal (intercluster) transaction if and only if the

requesting process and the requested resource are in the same (different) cluster(s).

A Hicrarchical Deadlock Detection Protocol

(A) Periodically, a central control node is chosen. This noce performs the
following operations:

(1) Chooses dynamically a control node for each cluster.

(2) Broadcasts a ressage to all contro! nodes requesting them to send
their status information and wait-for relations of the intercluster
transactions.

(3) Constructs a demand graph of the system using both the intercluster
transactions for which the resource status report agrees with the
process status report and the wait-for relations (which arc defined
later) sent from the control nodes. If there is a directed cycle in the
demand graph, the system is in a deadlock, otherwise, the system is
not in a d=adlock.

(8) Whenever a node receives a status report request from the central control
node, it performs the following operations:

(1) Broadcasts a message to all nodes in the cluster requesting them to
send thzir status tables and waits uitil all tables have been received.

. (2) Constructs a demand graph for the cluster using only local

transactions for which the resource status table agress with the

. process status table.

(3) Computes the transitive closure of the demand graph. If there is a
directed cycle in the demand graph, the system is in a deadlock.

(4) Dervies the wait-for relations from the transitive closurc of the
demand graph. A processfresource is waiting for a process/resource
if and only if:

(@) The procesess and/or the resources are in some intercluster
transactions.

(b) The process/resource is waiting directly or indirectly for the
process/resource (i.e., here is a directed arc pointing from the
process/resource to the process/resource in the transitive
closure of the dernand graph).

{5) Send the intercluster transaction status inforrnation and the wait-for
relations to the central control node.

The above concept can be extended into many levels. In this way, a

nierarchy of control nodes can be constructed. Due to the local access pattern of a

system, the amount of information that has to be sent from a child control node to

its parent can be greatly reduced.

(el

CHAPTER 5

Software Reliability

5.1 Classification of Software Reliability Modcls

To analyze and further develop different reliability models, we first
classify them based primarily on the phase of software life-cycle during which the
model is applicable, namely, Testing and Debugging phase, Validation phase,
Operation and Maintenance phase. During the Testing and Debugging phase, the
implernented software is tested and debugged. It is often assumed that the
correction of errors does not introduce any ncw errors. lence, the reliability of
the program increases and, therefore, the models used during this phase are also

called reliability growth models. These models are mainly used to obtain a

preliminary estimate of the software reliability. However, software developed for
critical applications, like airtraffic control, must be shown to have a high
reliability prior to actual use. At the Vafidation phase, the seftware is subjected to
a large amount of testing in order to estimate the reliability. Errors found during
this phase arc not corrected. In fact, if errors are discovered the softwarc may be
tejected. The Nelson model (TRW 76) is based on statistical princinles. The
software s tested with test cases having the same distribution as the actual
operating environment. After the software has been thoroughly validated it is put
into operation. During use further errors may be detected or there may be user
demands for new features. These presures result in maintenance activity (SWA 76,
SWA 79), i.e., modification of the software. The addition of new fcatures rcsults in
a growth in the size of the software. During the maintenance phase, the possible
activitics are: error correction, addition of new features and improvements in
algorithins. Any of thc:se activities canpeturb the reliability of the system. The
new reliability can be estimated using the models for the validation phasc.

However, it may bc possible to estimate the change in the reliability using fewer

- 130 -

.esting cases by ensuring that the original features have not been altered. We do
not know of any existing software reliability models applicable during this phase.
Based on the above classifications, we develop a theory of software reliability
i:2sed on the nature of the input domain of the program, i.e., the size of the errors
- ad the number, complexity and continuity of equivalence classes formed in the

‘aput domain.

5.2 TYesting and Debugging Phase

The major assumpticn of all software reliability growth models is that
isputs are selected randomly and independently from the input domain according to

+he operational distribution.

This is a very strong assumption and will not hold in general, especially so
in the case of process control software where successive inputs are correlted in
zime during system operation. To adjustify the above disadvantage, the models arc
developed and can be applied to any type of software, their validity increcases as
the size of the software and the number of programimers involved increases:

{A) Random Walk Model

We can view the crrow size under operat,onal inputs, say, , 1s @ tandor
walk process in the interval (0,e). Each time the program is changed (due to crror
corrcctins or other modifications) changes. Let Zj denote the time between
failures after the jth change. Zp is a random variable w'hose distribution depends
on j. We do not know anything about the random walk process of other than a
saniple of time between failures. Hence, one approach is to construct a model for
and {it thc parameters of the model to the sample data. Then we assume that the -

future behaviour of can be predicted fromthe behaviour of the model.

(B) Bayesian Model

An alternative approach is the bayesian approach advocated by Littlewood

- 3] -

Ml ok R

~o——

(LIT 79(B)). Here we postulate a prior distribution for eachof |, 2, ... j- Then

based on the sample data, we compute the postericr distribution of j+le

5.3 Validation Phase

The well known Nelson Method during this phase is based upon the policy

that the test cases are selected randomly according to the operational distribution.

However, it suffers from a number of practical drawbacks:

(n

2

(3

(%)

In order to have a high confidence in the reliability estimate, a large
number of test cases must be used.

It does not take into account "continuity" in the input domain. For
example, if the program is correct for a test cse, then it is likely that it is
corrcct for all test cases executing the same sequence of statements.

It assumes random sampling of the input domain. Thus, it cannot take
advantage of testing strategies which have a higher probability of
detlecting errors, e.g., boundary value testing, etc. Further, for most
real-time control systems, the successive inputs arc correlated if the
inputs are sensor readings of physical quantities, like temperature, which
carrat ghange rapidly. Tathese cases we ~annot perforir random testing.
It does not consicer any complexity measure of the program, e.g., number
of paths, statements, etc. Generally, a complex prograin should be tested
more than a simple program for the same confidence in the reliability

estimate.

The approach we developed reduces the number of test cases required by exploiting

the nature of the input domain of the program. The input domain based approach

to the estimation of software reliability is: R = 1 - Vear, where Ve is the c¢stimated

remaining error size. Vep can be deterined by testing the program and locating and

estimating the size of errors found. In most cases this is simple since it is

relatively casy to find the inputs affected by a known error. If this cannot be done,

- 372 -

R e —

i,

S i e, W"M

random sampling can be used to estimate the size of the error. It is expected that
software for critical applications will contain no known errors during this phase.
-eliability of the program given any input distribution by assuming soine knowledge
about the error distribution in the input domain. Furthermore, we can generalize
this by considering the input distribution as well as the membership function of

each input element in probabilistic equivalence classes defined as fuzzy sets (ZAD

/9.

5.5 Applications

{a) PROGRAMMING LANGUAGE DESIGN: The reliability of a program
lepends greatly on the language on which it is coded. For example, many more
rrrors will be introduced in a program coded in a Machine Level Language (MLL)
“han in a program c¢ded in a High Level Language(HLL). This is the bases of the
concept of language leve! introduced by Halstead (HAL77). However, this criteria
only considers the difference between the volurnes of the programs produced by
using different languzges. Here we propose a different measure of the goodness of
a pregramming language. The criteria is qualitative and is based on the sizc of
75sible errors which a programener can commit. A good programminrg language
construct is one which maximizes the change of detecting an crror when it occurs,
i.e., it increascs the size of likely errors. We consider all methods of validating the
software, including code reading, static analysis, dynamic analysis and testing.

(h) PROJECT MANAGEMENT: Another important application of software
reliability theor is in project management. Onc obvious use of the rcliability
measurce is as a criterion for the acceptance or rejection of the software. Besides,
sofiware reliability can be applied to the scheduling of testing when several
different strategics can be used. The analysis is based on the concept of cfficiency
of testing strategics. We develop a probabilistic model which determines a test

case sclection strategy in order to minimize some cost criterion. The cost could be

. 33-

the amount of time required to develop a test casc using a particular strategy.
This is useful for control systems' software since the requirement of high
confidence in the reliability estirate implics a large amount of testing. The model
also specifies the optimal distribution of test cases over thevarious modules
constituting the program. For example, simple modules should be tested less than

complex error~prone modules.

-3 .

CHAPTER 6
future Work
One future research area is to develop the criteria for grouping critical

3 ~epions and monitors into sets so to minimize the among of "unstructuredness"
created by the grouping. Another future research area is to develop faster
deadlock detection procedures. Although it has been proven that determining the
;afety of a system is NP-complete, the computation cornplexity can be in
;olynomial to the size of the program if some parameters ave fixed.

One issue which we have not dealt with is thestimtion of the overall
hardware/software system reliability. The combination of hardware and software
rcliability estimates is discussed in (BUN 80, KEE 76, KLI 80, THO 80). However,
inc approach generally advocated is to assume that hardware and sofiware failures
are independent, so that the overall system reliability is the product of the
software and hardware reliability estimates. This is unsatisfactory since it is
possibie for the software to rectify hardware failures and vice versa. For example,
the failure of 2 line printer need not be a systemn failure if the software can
re-direct the cutput to another device. A viable opproach is to view the overall
Lrstem as baing si a'lar to a miemachin systeanin.

For complex systems, methods must be developed for estimating the
dosign correctness of the hardware. Thus, failures can be duc to software errvors,
nardware compenent break-downs or hardware design errors. The applicability of
seftware reliability growth models discussed above to e¢stimating the design

zorrectness needs to be investigated.

Another limportant rescarch area is developing techniques for validating
software rcliability models. At present the modcls arc applied to soine project
“ata and their validity is deduced from the results. This is not satisfactory since

very few sets of actual data are available. Further, the models make some

-35-

v

‘F

T

assurnptions which may not hold for the particular project. For example, most

software reliability growth models assume that the testing process is the same as

the operational environment, which is not true in general. In this thesis we have

adopted a deductive approach coupled with several experiments. Also, we have
derived auxiliary results (e.g., the optimal set of test cases) which scem

reasonable. Further, we have developed an independent way of validating each

model, namely, the determination of the error size for the stochastic model and

the error seeding approach to estimating the correctness probability for the

theorctical model we developed.

- 36 -

Dibliography
(AGE 75)

BEL 76)

(BR172)

Bl 73a)

(BRI 73Db)

(hUN 30)

CHE 79)

{NI13 71)

FER 78)

(COS 71)

Agerwala, T. and Flynn, M. J., "On the Completeness of
Representatin Schemes for Concurrent Systems, " Conference on
Petri Nets and Related Method, M.1.T., Cambridge, Massachusetts,
July 1975,

Bell, T. E. and Thayer, T. A., "Software Requirements: Arc they
really a problemn?" Proceedings of the 2nd International Conference
on Software Engineering, October, 1976.

Brinch Hanse, P., "Structure Multiprogramming,”" Comm. ACM, Vol, i
15, No. 7, July 1972.

Brinch Hansen, P., "Concurrent Programming Concepts," Cemputing

Surveys, Vol. 5, No. 4, Dec. 1973.

Brinch Hansen, P., Operating Systein Principles, Prentice-Hall,

Englewood Cliffs, N, J., 1973,

Bunce, W. L., "Hardware ond software: an analytical approach,:
Precc. Annual Reliability and Maintainability Syinp., San Francisco,
CA., Jan. 1980, pp. 209-213.

Chreung. R. C., "A User-criented sofiware reliability moda],)" Froc.
COMPSAC 78, Chicago, IL., Nov. 1978, pp. 565-570.

Dijkstra, E. W., "Hierarchical Ordering of equential Processes," Acta
Inforratica, Vol. 1, No. 2, 1971.

Ferrari, D., Computer Systems Performance Evaluotion,

Prentice-tlall, Inc., Englewood Cliffs, 1973.

Gostelow, K. P., "Flow of Control, Resource Allocation and the
Proper Termination of Programs," Ph.D. Dissertation, School of
Engincering and Applicd Science, University of California, Los

Angcles, Dec. 1971,

-37.

S g LoE L ool

T T T Y

(HAC 75)

(HAL 77)

(FHIAM 76)

(HOA 74)

(HOL 71)

(iXAR 66)

(KAR 72)

(KEE 76)

(KL1 &0)

(LIE 76)

(L1 75(1)

Hack, M., "Dccidability questions for Petri nets," Ph.D. Thesis, Dept,
of Electrical Engincering, M.I.T., Cambridge, Mass., Dec. 1975.
Halstead, M. H., Elcmnents of Software Scicncé, Elsevier
North-Hollance, Inc., New York, 1977.

Hamilton, M. and Zeldin, S., "Highcr Order Software Mcthodology for
Defining Software," IEEE Trans. on Software Enginecering, Vol. SE-2,
No. 1, March 1976.

tHoare, C. A. R., "Monitors: An Operating Systern.Stgructuring
Concept," Comnm. ACM, Vol. 17, No. 10, Oct. 1974,

Holt, R. C., "On Deadlock in Computer Systems," Ph.D. Thesis, Dept.
of Computer Science, Cornell University, Ithaca, N.Y., Jan. 1971,
Karp, R. M. and Miller, P.. E., "Properties of a model for Parallel
Computation: determinancy, terinination, queucing,” SIAM J. Appl.
Math. 14, 6, Nov. 1966.

Karp, R. M., "Reducibility Among Comf{inatorial Problems,"
Complexity of Computer Cornputations, Plenumn Press, N.Y., 1972.
Keegan, R., H., Howard, R. C., "Approximnation mecthod for
esatnating maaadagiul parainetey o a sofiware-cotdrolied
electro-mechanical system," Proc. Annual Reliability and
Maintainability Symp., 1976, pp. 434-439.

Kline, M. B., "Software and hardware R & M: what are the
differences?" Proc. Annual Reliability and Maintainability Symp.,
San Francisc, CA., Jan. 1980, pp- 179-185.

Licn, Y. E., "Termination Properties of Generalized Petri Nets.”

SIAM J. Computer 5, 2, June 1976.

Littlewood, B., "A rcliability model for Markov structured software,"

LIT 79(B)

SLIT 79(C)

(NOL 73)

(LT 77)

(POS 74)

(T110 30)

(TRW 79)

{ZAD 79)

Proc. 1975 Int. Conf. Reliable Software, Los Angeles, CA., pp.
204-207.

Littlewood, B., "How to measure software reliability and how not to
.-, IEEE Trans. Reliability, Vol. R-28, June 1979, pp. 103-110. Also
in Proc. 3rd Int. Conf. on Software Eng., Atlanta, GA., May 1978, pp-
37-45.

Littlewood, B., "Software reliability model for modular program
structure," IEEE Trans. Reliability, Vol. R-28, No 3, Aug. 1979, pp.
241-246,

Noe, J. D. and Nutt, G. J., "Macro E-nets for Representation of
Parallel Systems," IEEE Trans. on Cornputers, Vol. C-22, No. 3,
September 1977.

Peterson, J. L., "Petri nets," Computing Surveys, Vol. 9, No. 3,
September, 1977.

Postel, J. B, "A Graph Mocdel Analysis of Computer Coinmiunication
Protocols," Pi.D. dissertation UCLA-Eng-7410, Jan., 1974%.
Thornson, W. E., Chelson, P. O., "On the specification and testing of
seftware reliability,” Proc. Anncel Reliability and Bllinia'nal ility
Symp., San Francisco, CA., Jan. 198G, pp. 379-383.

TRW DEfense and Space Systems Group, Software Reliability Study,
Report No. 76-2269, 1-9-5, TRW, Redondo Beach, CA., 1976.
Zacceh, L. A., "Fuzzy sets and informationgranularity,” Advances in
Fuzzy Sct Theory and Applications, edited by M. M. Gupta, R. K.

Ragadz and R. R. Yager, NorthHolland Publishing Co., 1979.

- 39.

